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Minimum-Energy Multicast Tree in Cognitive Radio Networks

Wei Ren, Xiangyang Xiao, Qing Zhao

Abstract

We address the multicast problem in cognitive radio networks, where secondary users exploit

channels temporarily unused by primary users (i.e., spectrum opportunities). The existence of a commu-

nication link between two secondary users depends not only on the transmission power of the secondary

transmitter and the distance between these two users, but also on the occurrence of spectrum opportu-

nities. This dependency on the occurrence of spectrum opportunities complicates the construction of an

efficient multicast tree in cognitive radio networks. By taking into account this dependency, we propose

a low-complexity approximation algorithm with bounded performance guarantee for constructing the

minimum-energy multicast tree, which transforms the multicast problem into a directed Steiner tree

problem. We also demonstrate this dependency by studying the impact of the traffic load of the primary

network on the minimum-energy multicast tree.

I. INTRODUCTION

Multicast can provide better support for one to many communications than unicast or broad-

cast [1], and it thus has many potential applications in both civil and military domains, e.g.

streaming media, Internet television, and delivery of situational awareness information and com-

mands on the battlefield. One of the most significant problems in implementing the multicast is to

construct an energy-efficient multicast tree, where several heuristic or approximation algorithms

have been proposed in [2–4] for the conventional wireless networks.

Multicast in cognitive radio (CR) networks has received little attention. In a CR network,

secondary users identify and exploit channels temporarily and locally unused by primary users

without causing unacceptable interference to primary users [5]. When we calculate the energy

consumption for the multicast trees in CR networks, we thus need to consider the energy used

for sensing the availability of the channel as well as the energy used for transmissions. The
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proportion of the sensing energy is significant especially when spectrum opportunities occur

infrequently. In this case, much more energy is consumed for sensing the channel before each

successful transmission.

Another elusive twist in constructing an efficient multicast tree for CR networks is that the

occurrence of spectrum opportunities is affected by the transmission power of secondary users [6].

If a secondary user uses a high transmission power to reach a relatively large number of multicast

nodes, it must wait for the opportunity that no primary receiver is active within its relatively

large interference region, which happens less often. As discussed above, the secondary user will

spend more sensing energy for the emergence of one opportunity. If, on the other hand, it uses

a low power, it can only reach a small number of multicast nodes, and more transmissions, each

relying on its own opportunities to emerge, are needed to reach all the multicast nodes. This

tradeoff in choosing the secondary users’ transmission power further complicates the construction

of the minimum-energy multicast tree in a CR network.

To summarize, the construction of the minimum-energy multicast tree in a CR network depends

not only on the topology of the secondary network which is essentially determined by the

transmission powers of the secondary users, but also on the occurrence of spectrum opportunities

which is determined by the transmission powers of the secondary users and the traffic load of

the primary network [6]. As a consequence, the minimum-energy multicast tree under a low

primary traffic load may not be optimal under a high primary traffic load.

By considering the impact of the occurrence of spectrum opportunities, we propose an approx-

imation algorithm for constructing the minimum-energy multicast tree of a CR network in this

paper. The basic idea of this algorithm is to formulate the multicast problem as a directed Steiner

tree problem and then apply an approximation algorithm for the directed Steiner tree problem.

The algorithm delivers a solution with a bounded approximation ratioO(log2 |D|), where|D| is

the number of destinations. Letn be the number of secondary users andk their maximal degree1,

then the running time of the approximation algorithm is given byO
(
(2kn)log |D||D|2 log |D| + kn2k

)
.

We also demonstrate the dependency of the minimum-energy multicast tree on the occurrence

of spectrum opportunities by studying the impact of the traffic load of the primary network.

1The degree of a secondary user is defined as the number of secondary users which are within its maximal transmission range.
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II. NETWORK MODEL

We consider a secondary network overlaid with a Poisson distributed primary network, where

both networks adopt a slotted transmission structure. Assume that the primary users are mobile

and the relative positions of the secondary users are static.

A. Primary Network

At the beginning of each slot, the primary transmitters are distributed according to a two-

dimensional Poisson point processXPT with density λPT . To each primary transmitter, its

receiver is uniformly distributed within its transmission rangeRp. Here we have assumed that all

the primary transmitters use the same transmission power and the transmitted signals undergo an

isotropic path loss. Based on the displacement theorem [7, Chapter 5], it is easy to see that the

primary receivers form another two-dimensional Poisson point processXPR with densityλPT .

Note that the two Poisson processesXPT andXPR are correlated.

B. Secondary Network

In contrast to the case in a conventional ad hoc network, whether the communication is

successful between two secondary users depends not only on the transmission power of the

secondary transmitter and the distance between these two users, but also on the availability of

the communication channel (i.e., the presence of a spectrum opportunity). The latter is determined

by the transmitting and receiving activities in the primary network as discussed below.

The notion of spectrum opportunity in a multicast setting is open for interpretation. Its basic

composition, however, roots in the definition of spectrum opportunity in unicast [8]. Let A be

the secondary transmitter and B its receiver (see Fig. 1). Under the disk signal propagation and

interference model, there exists an opportunity fromA andB if the transmission fromA does

not interfere with nearbyprimary receivers in the solid circle, and the reception atB is not

affected by nearbyprimary transmitters in the dashed circle. The radiusrI of the solid circle

at A, referred to as the interference range of the secondary users, depends on the transmission

power ofA and the interference tolerance of the primary receivers, whereas the radiusRI of the

dashed circle (the interference range of the primary users) depends on the transmission power

of the primary users and the interference tolerance ofB.
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Fig. 1. Definition of spectrum opportunity.

It is clear from the above discussion that spectrum opportunities depend on both transmitting

and receiving activities of the primary users. Furthermore, spectrum opportunities areasymmetric.

Specifically, a channel that is an opportunity whenA is the transmitter andB the receiver may

not be an opportunity whenB is the transmitter andA the receiver.

III. M INIMUM -ENERGY MULTICAST TREE

Let µ be the multicast source andD the set of destinations. LetT be a multicast tree rooted

at µ in the secondary network,VT the node set ofT , andVTL ⊆ V the set of leaf nodes, then

the objective and the constraint of the minimum-energy multicast tree problem is given by

arg min
T

{
E

[
∑

ν∈VT −VTL

e(ν)

]}
s.t. etx(ν) ≤ eM(ν) for all ν ∈ VT , µ ∈ VT , andD ⊂ VT ,

wheree(ν) denotes the energy used by nodeν consisting of the sensing energy and the trans-

mission energy,etx(ν) the energy used by nodeν for each transmission, andeM (ν) the maximal

allowable transmission energy for nodeν. The sum ofe(ν) does not includeVTL because the

leaf nodes in the multicast tree neither transmit nor detect the opportunity.

In general, the solution to the minimum-energy multicast tree should specify two parameters

for each secondary node2: the transmission power and the group of its intended receivers. But

2If a secondary node is not included in the multicast tree, then its transmission power is zero and the group of its intended

receivers is an empty set.
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it can be shown in the proof of Theorem 1 that given the group of the intended receivers, the

optimal transmission power is determined by the distance to the farthest intended receiver. It

follows that the minimum-energy multicast tree is fully determined by the group of the intended

receivers for each secondary node.

The approximation algorithm for the minimum-energy multicast tree is based on an auxiliary

directed graph with edge weights. We will address the construction of the auxiliary graphG and

the calculation of the edge weights in the following two subsections.

A. Construction of the Auxiliary Graph G

The auxiliary graphG is constructed in the following way. For each secondary nodeµ with

degreek, we add2k−1 multicast nodesνi (1 ≤ i ≤ 2k−1) which represent all possible groups

of its intended receivers. Then we connect the secondary nodeµ with each of its2k−1 multicast

nodes by a directed edge and assign a positive weight to each edge (see Fig. 2). For the directed

edge(µ, νi), the assigned weightwi is equal to the average energy required for transmitting

successfully fromµ to the group of the intended receivers denoted byνi. Finally, we connect

eachνi with its corresponding intended receivers by directed edges and assign zero weight to

all those edges.

µ

ν1

ν2

ν3

ν2k−1

w1
w2

w3

w2k−1

Fig. 2. Generation of multicast nodes for nodeµ in the secondary network.

Based on the above construction, we see thatG is an edge-weighted directed graph, and it has
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two types of nodes: user node and multicast node. The user nodes represent the secondary users,

and the multicast nodes specify the transmission power and the group of intended receivers for

the user nodes. LetVG be the vertex set ofG, andEG the edge set ofG. Given the sourceµ ∈ VG

and a destination setD ⊆ VG, the directed Steiner problemA(µ, D) is to find a treeT rooted

at µ which spans all the nodes inD with the minimum weight. Then we have the following

theorem about the relationship between the directed Steiner tree inG and the minimum-energy

multicast tree in the secondary network.

Theorem 1: Given a multicast session in the secondary network, letµ be the source, and

D the destination set. Define the weight of a tree in the auxiliary graphG as the total sum

of the weights of the edges in the tree, and the weight of a multicast tree in the secondary

network as the total sum of the average energy used by the nodes in the multicast tree. Then

the directed Steiner tree rooted atµ which spans all the nodes inD has the same weight as the

minimum-energy multicast tree in the secondary network.

Proof: Although the set of the transmission power that each secondary node can choose is

continuous, it suffices to consider a finite subset of it in order to obtain the minimum-energy

multicast tree. For a secondary nodeµ in the minimum-energy multicast tree, letµ1, µ2,...,

µk be the secondary nodes within the maximum transmission range ofµ which are listed in

an ascending order of the distance fromµ. Then under the disk signal propagation model,

the optimal transmission power forµ must belong to{0, Cdα
1 , Cdα

2 , ..., Cdα
k}, where C is a

constant,di (1 ≤ i ≤ k) is the distance betweenµ and µi, and α path-loss exponent. Let

d0 = 0 and dk+1 = ∞. Suppose that the optimal transmission power takes some other value

p∗ /∈ {0, Cdα
1 , Cdα

2 , ..., Cdα
k} with Cdα

i < p∗ < Cdα
i+1 for somei. We can always replacep∗ by

Cdα
i for the nodeµ, and it does not change the multicast tree but reduces the energy cost of

the multicast tree. It follows that the minimum-energy multicast tree is fully determined by the

group of intended receivers for each secondary node. Based on the construction of the auxiliary

graphG, we thus conclude Theorem 1.

Based on Theorem 1, the problem of the minimum-energy multicast tree is transformed

into a directed Steiner problem via the construction of the auxiliary graphG. By applying

an approximation algorithm for the directed Steiner problem [9] toG (see Sec. IV), we can

obtain an approximate solution to the problem of the minimum-energy multicast tree.
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B. Calculation of the Edge Weights

Let ν denote the multicast node which is connected to a group of intended receivers{µ1, µ2, ..., µm}

for secondary nodeµ, then the weightw of the directed edge(µ, ν) is the expectation of the

sum of sensing energy and transmission energy until the last one in the group{µ1, µ2, ..., µm}

receives successfully fromµ, and it can be expressed as

w = E

[
T∑

t=1

(es + etxItx(t))

]
, (1)

where t is the slot index,T a stopping time which is the number of slots forµ transmitting

successfully to all the receivers that are connected toν, es the sensing energy per slot,etx the

energy used for each transmission, andItx(t) an indicator function which is1 if µ transmits in

slot t and0 otherwise.

Consider the following two transmission schemes for the secondary nodeµ: one is thatµ

transmits even ifµ only sees the opportunity fromµ to some of the receivers that are connected

to ν; the other is thatµ does not transmit untilµ sees the opportunity fromµ to all the receivers

that are connected toν. If µ uses the first transmission scheme (referred to as sequential scheme),

it may possibly transmit more than once, where each time it transmits to disjoint subgroups of

receivers that are connected toν. Although the calculation of (1) can be formulated into solving

the absorbing time of a Markov chain in this case, the obtained expression is complicated and

difficult to evaluate.

If µ adopts the second transmission scheme (referred to as simultaneous scheme),µ transmits

only once to all the receivers that are connected toν whenµ sees the opportunity fromµ to all

the receivers. Then in this case, the edge weightw can be rewritten as

w = E[T ]es + etx,

whereT is the first slot thatµ sees the opportunity fromµ to all the receivers that are connected

to ν. Due to the i.i.d. distribution of the primary network over slots,T is obviously a geometric

random variable with parameterp0, wherep0 is the probability of having an opportunity fromµ

to all the receivers{µ1, µ2, ..., µm} at any given time. Under the disk signal propagation model,

we thus have that

w = es/p0 + etx

= es/p0 + Cdα,
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whereC is a constant,d the distance betweenµ and its farthest intended receiver, andα the

path-loss exponent.

The following proposition gives the expression forp0.

Proposition 1: Let λPT be the density of the primary transmitters. LetRp and RI denote

the transmission range and the interference range, respectively, of the primary users. Given

a secondary userµ and a group of its intended receivers{µ1, µ2, ..., µm}, let rI denote the

interference range3 of µ when its transmission reaches all the intended receivers. Choosingµ as

the origin of the polar coordinate system, we have that the probabilityp0 of having an opportunity

from µ to all its intended receivers is given by

p0 = exp


−λPT πr2

I −

∫∫

SU

λ′
PT (r)rdrdθ


 , (2)

where

λ′
PT (r) = λPT

[
1−

SI(r, Rp, rI)

πR2
p

]
,

SI(r, Rp, rI) is the common area of two circles with radiiRp and rI and centeredr apart, and

SU is the union of the circles with radiiRI centered at each intended receiverµi (1 ≤ i ≤ m).

Furthermore, we have

exp
[
−λPT (πr2

I + SU)
]

< p0 ≤ min
{
exp

(
−λPT πr2

I

)
, exp (−λPT SU)

}
, (3)

whereSU is the area of the regionSU .

Proof: From the definition of unicast spectrum opportunity given in Sec. II-B, we know

that a spectrum opportunity fromµ to all its intended receivers{µ1, µ2, ..., µm} occurs if and

only if there are no primary receivers within distancerI of µ and no primary transmitters within

distanceRI of each receiverµi (1 ≤ i ≤ m).

Let I(µ, d, rx/tx) denote the event that there exists primary receivers/transmitters within dis-

tanced of a secondary userµ. Let I(µ, d, rx/tx) denote the complement ofI(µ, d, rx/tx). Then

3Since the minimum transmission power for successful reception is, in general, higher than the maximum allowable interference

power, it follows that the transmission rangerp of µ is smaller than its interference rangerI , whererp is set to be the farthest

distance betweenµ and its intended receivers. Furthermore, under the disk signal propagation and interference model, we have

rp = βrI (0 < β < 1).



TECHNICAL REPORT TR-09-04,UC DAVIS, SEPTEMBER 2009. 9

the probabilityp0 of having an opportunity fromµ to {µ1, µ2, ..., µm} is given by

p0 = Pr{I(µ, rI , rx) ∩ I(µ1, RI , tx) ∩ · · · ∩ I(µm, RI , tx)}

= Pr{I(µ1, RI , tx) ∩ · · · ∩ I(µm, RI , tx)| I(µ, rI , rx)}Pr{I(µ, rI, rx)}. (4)

Since the primary receivers admit a Poisson point process with densityλPT , it follows that

Pr{I(µ, rI , rx)} = exp
(
−λPT πr2

I

)
. (5)

Given I(µ, rI , rx), i.e., there are no primary receivers within distancerI of µ, based on

Independent Thinning Theorem [7, Chapter 5], we have that the primary transmitters form an

inhomogeneous Poisson point process with density specified by

λ′
PT (r) = λPT

[
1−

SI(r, Rp, rI)

πR2
p

]
.

Thus,

Pr{I(µ1, RI , tx) ∩ · · · ∩ I(µm, RI , tx)| I(µ, rI , rx)} = exp


−

∫∫

SU

λ′
PT (r)rdrdθ


 . (6)

Plugging (5, 6) into (4) yields (2).

From (4), we can easily see that

p0 ≤ min{Pr{I(µ, rI , rx)}, Pr{I(µ1, RI , tx) ∩ · · · ∩ I(µm, RI , tx)}}

= min{exp
(
−λPT πr2

I

)
, exp (−λPT SU)}.

On the other hand, it follows from (6) that

Pr{I(µ1, RI , tx) ∩ · · · ∩ I(µm, RI , tx)| I(µ, rI , rx)} > Pr{I(µ1, RI , tx) ∩ · · · ∩ I(µm, RI , tx)}.

By considering (4), we have that

p0 > Pr{I(µ, rI, rx)}Pr{I(µ1, RI , tx) ∩ · · · ∩ I(µm, RI , tx)}

= exp
[
−λPT (πr2

I + SU)
]
.

Thus, the inequality (3) is shown.

From (2), we can see that the computation ofp0 requires a double integral over an irregular

region which is the union of several circles. Due to the complexity of the computation, we use

the lower bound onp0 given in (3) as an approximation ofp0 to obtain the edge weightw, i.e.,

w ≈
es

exp [−λPT (πr2
I + SU)]

+ Cdα. (7)
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IV. A PPROXIMATION ALGORITHM FOR DIRECTED STEINER TREES

In Sec. III, we transform the problem of the minimum-energy multicast tree into the directed

Steiner problem by deriving a directed graphG with weighted edges from the secondary network.

In this section, we present an approximation algorithm for the directed Steiner problem [9].

Consider a directed graphG = (VG, EG) whereVG is the vertex set,EG is the edge set, and

each edgee ∈ EG is associated with a nonnegative weightw(e). Given a sourceµ ∈ VG and

a destination setD ⊆ VG, we recall that the directed Steiner problemA(µ, D) is to find a tree

T rooted atµ which spans all the nodes inD with the minimum weight. Letk = |D| be the

number of destinations. A slightly more general version of the directed Steiner problem is to

find a treeT rooted atµ which spansat least m nodes inD with the minimum weight for some

m ≤ k, which is denoted byA(µ, m, D).

1) Preliminary Results: Assume that the directed graphG is strongly connected,i.e., for

every pair of nodesµ and ν, there exist at least one directed path inG from µ to ν and at

least one directed path inG from ν to µ. Then based onG, we construct a complete graph̃G

which has the same vertex setVG as G, and we let the weightw(µ, ν) of each edge(µ, ν) in

G̃ equal the shortest path distance fromµ to ν in G. Although G̃ contains more edges thanG,

the solutionT̃ to the directed Steiner problem̃A(µ, D) directly leads to the solutionT to the

directed Steiner problemA(µ, D) if we replace the edges of̃T that do not exist inG by the

corresponding shortest paths inG.

Let w(T ) denote the weight of a treeT which is the total sum of the weights of the edges

in T , and k(T ) the number of destinations contained inT , i.e., k(T ) = |VT ∩ D|. Then we

define the densityd(T ) of treeT as the ratio of the weight ofT to the number of destinations

contained inT , i.e.,

d(T )
∆
=

w(T )

k(T )
.

A tree is said to be anl-level tree if no leaf is more thanl edges away from the root. It is

shown in [10] that for alll ≥ 1 there exists anl-level tree that provides ak1/l approximation

to the general directed Steiner problem̃A(µ, m, D), wherem ≤ k is the minimum number of

destinations required to be contained in thel-level tree. A trivial approximation whenl = 1 is

the combination of the edges of̃G from the rootµ to them destinations which are closer toµ

than the otherk−m destinations (in terms of the shortest path distance). This approximation to
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Ã(µ, m, D) gives an approximation toA(µ, m, D) if we change the edges of̃G that do not exist

in G into the corresponding shortest paths inG. Let T1 denote the above approximate solution

to A(µ, m, D) andT ∗ the directed Steiner tree forA(µ, m, D) (i.e., the optimal solution). It can

be easily shown that the
w(T1)

w(T ∗)
≤ m.

2) Algorithm: This approximation algorithm is a special case of the approximation algorithm

for the general directed Steiner tree problem̃A(µ, m, D) [9]. The basic idea is to recursively

obtain a ⌈log k⌉-level tree T̃ which provides alog k(log k − 1)k1/ log k approximation to the

directed Steiner problem̃A(µ, D) and then transform̃T into a treeT in the original directed

graphG.

Approximate Algorithm for Directed Steiner Problem A(µ, D)

INPUT:

(i) An edge-weighted directed graphG = (VG, EG), where each edgee ∈ EG is associated

with a nonnegative weightw(e);

(ii) A sourceµ ∈ VG and a destination setD ⊆ VG with sizek = |D|.

OUTPUT: A treeT rooted atµ that spans all the nodes inD.

STEP 0 If not all the destinations inD are reachable fromµ, thenRETURN φ.

STEP 1 Derive a complete graph̃G from G. Specifically, for every pair of nodesµ andν in G, if

there exists a directed edge(µ, ν) from µ to ν in G, i.e., (µ, ν) ∈ E, we keep the edge

(µ, ν) along with its weight inG̃; if not, i.e., (µ, ν) /∈ E, we add an edge(µ, ν) in G̃ and

assign the shortest path distance fromµ to ν in G to the edge as its weight iñG.

STEP 2 Invoke the functionFI(µ, k, D) which returns anI-level treeT̃ as an approximate solution

to the directed Steiner problem̃A(µ, D), where

I = ⌈log k⌉.

Given m ≤ |D|, the functionFi(µ, m, D) for i ≥ 1 is defined recursively as follows:
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k ← |D| (the number of nodes inD).

IF i = 1

T̃ ← the combination of the edges of̃G from µ to them nodes inD

which are closer toµ than the otherk −m nodes inD.

RETURN T̃ .

ELSE

T̃ ← φ.

Dleft ← D (the set of destinations that are not contained inT̃ ).

mleft ← m (the number of destinations that are needed byT̃ ).

WHILE mleft > 0

Tbest ← φ andd(Tbest) =∞.

FOR each vertexν ∈ V and eachm′ (1 ≤ m′ ≤ mleft)

T ′ ← Fi−1(ν, m
′, Dleft) ∪ {(µ, ν)}.

IF d(T ′) < d(Tbest) (compare the density of the two trees)

Tbest ← T ′.

T̃ ← T̃ ∪ Tbest (combineT̃ andTbest into one tree).

mleft = mleft − |Dleft ∩ V (Tbest)|.

Dleft = Dleft − V (Tbest) (V (Tbest) is the vertex set ofTbest).

RETURN T̃ .

Notice that all the operations of the functionFi(µ, m, D) are performed on the complete

graphG̃, not the original directed graphG.

STEP 3 Transform the treẽT in G̃ into a treeT in G by changing the edges of̃T that do not exist

in G into the corresponding shortest paths inG. The detailed procedure is shown as below.



TECHNICAL REPORT TR-09-04,UC DAVIS, SEPTEMBER 2009. 13

T ← φ.

FOR each edgee ∈ E(T̃ ) (E(T̃ ) is the edge set of treẽT )

IF e ∈ E(G) (E(G) is the edge set of graphG)

T ← T ∪ e.

ELSE

Le ← the shortest path inG corresponding toe.

T ← T ∪ Le.

RETURN T .

This is the end of this algorithm.

Remark. If T̃ is an optimal solution to the directed Steiner problem̃A(µ, D), then after we

replace the edges of̃T that do not exist inG by the corresponding shortest paths inG, we

obtain an optimal solutionT to the directed Steiner problemA(µ, D). It is easy to see thatT

does not have duplicate edges ofG, otherwise removing these additional edges yields a treeT ′

with a smaller weight thañT which leads to a contradiction. But sincẽT is only an approximate

solution to the directed Steiner problem̃A(µ, D), it is possible that during step 3, before adding

edgee or the shortest pathLe corresponding to edgee to the treeT , either the edgee or some

edge on the shortest pathLe is already included in the treeT . In this case, this duplicate edge

is not added to the treeT after the combination ofT ande or Le. It implies that

w(T ) ≤ w(T̃ ).

On the other hand, it follows from the relation between the original directed graphG and the

complete graph̃G thatw(T ∗) = w(T̃ ∗) whereT ∗ andT̃ ∗ are the optimal solutions to the directed

Steiner problemsA(µ, D) andÃ(µ, D), respectively. We thus have that the approximation ratio

of T is bounded above by the approximation ratio ofT̃ , i.e.,

w(T )

w(T ∗)
≤

w(T̃ )

w(T̃ ∗)
∼ O(log2 k),

wherek = |D| is the number of destinations inD.

V. APPROXIMATION ALGORITHM FOR M INIMUM -ENERGY MULTICAST TREE

In this section, we present the approximation algorithm for the minimum-energy multicast

tree and analyze its approximation ratio and time complexity.
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A. Algorithm

As discussed in Sec. III, the approximation algorithm for the minimum-energy multicast tree

relies on the approximation algorithm for the directed Steiner problem given in Sec. IV. The

procedure of this approximation algorithm is detailed as below.

Approximation Algorithm for Minimum-Energy Multicast Tree

INPUT:

(i) A secondary network whereV denotes the set of nodes.

(ii) The transmission range of each secondary node which is determined by the maximal

transmission power for the secondary node.

(iii) A source µ ∈ V and a destination setD ⊆ V with sizek = |D|.

OUTPUT: A multicast treeT rooted atµ that spans all the nodes inD.

STEP 1 Construct the auxiliary graphG.

1.1 Add the multicast nodes for each secondary node (see Sec. III-A).

1.2 Use (7) to compute the weight for each edge inG. Since there is no closed-form

expression forSU which is the area of the unionSU of several circles, we resort to

the Monte Carlo method. Specifically, we generateN points uniformly distributed in

a square with side lengthds which containsSU , and we count the number of points

that fall intoSU , denoted byNS. Then we have

SU ≈
NS

N
d2

s.

STEP 2 Apply the approximation algorithm for the directed Steiner problem given in Sec. IV to

the auxiliary graphG and obtain an approximate Steiner treeTG in G.

STEP 3 Transform the approximate Steiner treeTG into a multicast treeT in the secondary network.

The detailed procedure is shown in the following table.
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T ← φ.

FOR each nodeν ∈ V (TG) (V (TG) is the vertex set of treeTG)

IF ν ∈ V (i.e., ν is a user node, whereV is the node set of the secondary network)

T ← T ∪ ν.

ELSE (i.e., ν is a multicast node)

{ν1, ν2, ..., νm} ← the group of intended receivers denoted byν.

T ← T ∪ {ν1, ν2, ..., νm}.

µ← the parent ofν in TG.

T ← T ∪ (∪m
i=1(µ, νi)), where(µ, νi) is a directed edge fromµ to νi.

RETURN T .

This is the end of the algorithm.

Remark. It is possible that for some user nodeν in the approximate Steiner treeTG, it has

more than one child, that is, it has more than one group of intended receivers. Take two groups

G1, G2 of intended receivers as an example, and the case of more than two groups of intended

receivers can be easily extended. IfG1 ∩ G2 = φ, it implies that the secondary nodeν should

first multicast toG1 and thenG2 (a sequential way), or multicast toG1 in odd slots and toG2

in even slots (an alternating way). IfG1 ∩ G2 6= φ, then we can replaceG1 by G1 − G1 ∩ G2

and do the multicasting as the case ofG1∩G2 = φ. It is easy to see that this replacement ofG1

can only reduce the average energy cost of the resulting multicast tree, and it does not change

the resulting multicast tree.

B. Approximation Ratio and Complexity

For the approximation ratio and the complexity, we have the following theorem.

Theorem 2: Let T ∗ be the minimum-energy multicast tree in the secondary network, andT

the multicast tree given by the approximation algorithm in Sec. V-A. Define the weightw(T )

of a multicast treeT as the total sum of the average energy used by the nodes in the multicast

tree. Then we have

w(T )

w(T ∗)
≤ ⌈log |D|⌉(⌈log |D|⌉ − 1)|D|−⌈log |D|⌉, (8)

whereD is the set of destinations and|D| denotes the size ofD.
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Furthermore, the time complexity of the approximation algorithm for the minimum-energy

multicast tree isO
((

2kn
)log |D|

|D|2 log |D| + kn2k
)

, wherek is the maximal degree of the sec-

ondary nodes andn the number of secondary nodes.

Proof: Based on Theorem 1, we know that the weightw(T ∗) of the minimum-energy

multicast treeT is equal to the weightw(T ∗
G) of the Steiner treeT ∗

G. Moreover, when we

transform the approximate Steiner treeTG into the multicast treeT in Step 3, we have that

w(T ) ≤ w(TG). Sincew(TG)/w(T ∗
G) ≤ log |D|(log |D| − 1)|D|− log |D| (Theorem 4 in [9]), it

follows that

w(T )

w(T ∗)
≤

w(TG)

w(T ∗
G)
≤ w(TG)/w(T ∗

G) ≤ log |D|(log |D| − 1)|D|− log |D|.

On the other hand, Step 1 takesO(kn2k) time since every user node has at most2k−1 multicast

nodes, and each multicast node is connected to at mostk intended receivers. Similarly, Step 3

can be done inO(kn2k) time. By noticing that the auxiliary graphG hasO(2kn) nodes and

settingi = log |D| in Theorem 4 [9], we have that Step 2 takesO
((

2kn
)log |D|

|D|2 log |D|
)

time.

Thus, the time complexity of the approximation algorithm isO
((

2kn
)log |D|

|D|2 log |D| + kn2k
)

.

VI. SIMULATION RESULTS

In this section, we present several simulation results. We place20 secondary nodes uniformly

in a 500m× 500m square such that they are connected if they use their maximal transmission

power, and we fix their positions during the whole simulation. Other simulation parameters are

given by:rp = Rp = 130m, rI = RI = 144m, etx = 3× 10−4d3, andes = 1.

Since there is no comparable algorithm for cognitive radio networks, we choose the approx-

imation algorithm proposed in [4] for conventional wireless networks and compare its perfor-

mance with that of our approximation algorithm in cognitive radio networks. The percentage

of the average energy saving of our approximation algorithm under different traffic load of the

primary network (represented by the density of the primary transmitters) is shown in Fig. 3.

The conventional approximation algorithm, which treats the secondary network the same as a

primary network, transforms the multicast problem into an undirected node-weighted Steiner

tree problem, and gives a multicast tree invariant to the primary traffic load. Conversely, our

approximation algorithm takes into account the sensing energy, and produces the multicast trees
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that adapt to the primary traffic load. We can see that our approximation algorithm can save up

to 9 ∼ 34% of the total energy, and the energy saving becomes more substantial as the primary

traffic load increases.
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Fig. 3. Percentage of average energy saving vs. density of primary transmitters.

We also study the impact of the primary traffic load on the minimum-energy multicast tree.

Fig. 4 shows the average energy cost of the sequential and the simultaneous schemes (see

Sec. III-B) for a fixed multicast tree. We observe that the sequential scheme performs worse

when the primary traffic load is low, whereas it performs better when the primary traffic load

is high. Since the sequential scheme may probably lead to more than one transmission for

each edge in the multicast tree, it usually costs more transmission energy than the simultaneous

scheme. But on the other hand, it does not need to wait for all the intended receivers seeing

the opportunity, and thus it costs less sensing energy than the simultaneous scheme. As the

primary traffic load increases, its saving in the sensing energy gradually exceeds its extra cost

in transmission energy.

VII. CONCLUSION

In this paper, we have presented a low-complexity approximation algorithm with bounded

performance guarantee for constructing the minimum-energy multicast tree in cognitive radio
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Fig. 4. Average energy cost of the sequential and the simultaneous schemes (in logarithmic scale) vs. density of primary

transmitters.

networks. This approximation algorithm takes into account the energy used for sensing the

spectrum opportunities, and its constructed multicast trees are adaptive to the traffic load of

the primary network. Simulation results have demonstrated its substantial energy saving energy,

compared with a well-known conventional approximation algorithm. Furthermore, we study the

impact of the primary traffic load on the minimum-energy multicast tree. Simulation results have

shown that the simultaneous transmission scheme is more suitable for light primary traffic load,

while the sequential transmission scheme is desired for heavy primary traffic load.
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